72 research outputs found

    Definitional Issues in Functional Encryption

    Get PDF
    We provide a formalization of the emergent notion of ``functional encryption,\u27\u27 as well as introduce various security notions for it, and study relations among the latter. In particular, we show that indistinguishability and semantic security based notions of security are {\em inequivalent} for functional encryption in general; in fact, ``adaptive\u27\u27 indistinguishability does not even imply ``non-adaptive\u27\u27 semantic security. This is alarming given the large body of work employing (special cases of) the former. We go on to show, however, that in the ``non-adaptive\u27\u27 case an equivalence does hold between indistinguishability and semantic security for what we call {\em preimage sampleable} schemes. We take this as evidence that for preimage sampleable schemes an indistinguishability based notion may be acceptable in practice. We show that some common functionalities considered in the literature satisfy this requirement

    Ad Hoc Multi-Input Functional Encryption

    Get PDF
    Consider sources that supply sensitive data to an aggregator. Standard encryption only hides the data from eavesdroppers, but using specialized encryption one can hope to hide the data (to the extent possible) from the aggregator itself. For flexibility and security, we envision schemes that allow sources to supply encrypted data, such that at any point a dynamically-chosen subset of sources can allow an agreed-upon joint function of their data to be computed by the aggregator. A primitive called multi-input functional encryption (MIFE), due to Goldwasser et al. (EUROCRYPT 2014), comes close, but has two main limitations: - it requires trust in a third party, who is able to decrypt all the data, and - it requires function arity to be fixed at setup time and to be equal to the number of parties. To drop these limitations, we introduce a new notion of ad hoc MIFE. In our setting, each source generates its own public key and issues individual, function-specific secret keys to an aggregator. For successful decryption, an aggregator must obtain a separate key from each source whose ciphertext is being computed upon. The aggregator could obtain multiple such secret-keys from a user corresponding to functions of varying arity. For this primitive, we obtain the following results: - We show that standard MIFE for general functions can be bootstrapped to ad hoc MIFE for free, i.e. without making any additional assumption. - We provide a direct construction of ad hoc MIFE for the inner product functionality based on the Learning with Errors (LWE) assumption. This yields the first construction of this natural primitive based on a standard assumption. At a technical level, our results are obtained by combining standard MIFE schemes and two-round secure multiparty computation (MPC) protocols in novel ways highlighting an interesting interplay between MIFE and two-round MPC

    The Impact of Daubert on Forensic Science

    Get PDF

    On Selective-Opening Security of Deterministic Primitives

    Get PDF
    Classically, selective-opening attack (SOA) has been studied for randomized primitives, like randomized encryption schemes and commitments. The study of SOA for deterministic primitives, which presents some unique challenges, was initiated by Bellare et al. (PKC 2015), who showed negative results. Subsequently, Hoang et al. (ASIACRYPT 2016) showed positive results in the non-programmable random oracle model. Here we show the first positive results for SOA security of deterministic primitives in the standard (RO devoid) model. Our results are: \begin{itemize} \item Any 2t2t-wise independent hash function is SOA secure for an unbounded number of ``tt-correlated\u27\u27 messages, meaning any group of up to tt messages are arbitrarily correlated. \item An analogous result for deterministic encryption, from close variant of a NPROM scheme proposed by Hoang et al. \item We connect the one-more-RSA problem of Bellare et al. (J.~Cryptology 2003) to this context and demonstrate this problem is hard under the Φ\Phi-Hiding Assumption with large enough encryption exponent. \end{itemize} Our results indicate that SOA for deterministic primitives in the standard model is more tractable than prior work would indicate

    Semantically-Secure Functional Encryption: Possibility Results, Impossibility Results and the Quest for a General Definition

    Get PDF
    This paper explains that SS1-secure functional encryption (FE) as defined by Boneh, Sahai and Waters implicitly incorporates security under key-revealing selective opening attacks (SOA-K). This connection helps intuitively explain their impossibility results and also allows us to prove stronger ones. To fill this gap and move us closer to the (laudable) goal of a general and achievable notion of FE security, we seek and provide two ``sans SOA-K\u27\u27 definitions of FE security that we call SS2 and SS3. We prove various possibility results about these definitions. We view our work as a first step towards the challenging goal of a general, meaningful and achievable notion of FE security

    Instantiability of RSA-OAEP under Chosen-Plaintext Attack

    Get PDF
    We show that the widely deployed RSA-OAEP encryption scheme of Bellare and Rogaway (Eurocrypt 1994), which combines RSA with two rounds of an underlying Feistel network whose hash ({\em i.e.}, round) functions are modeled as random oracles, meets indistinguishability under chosen-plaintext attack (IND-CPA) in the {\em standard model} based on simple, non-interactive, and non-interdependent assumptions on RSA and the hash functions. To prove this, we first give a result on a more general notion called ``padding-based\u27\u27 encryption, saying that such a scheme is IND-CPA if (1) its underlying padding transform satisfies a ``fooling condition against small-range distinguishers on a class of high-entropy input distributions, and (2) its trapdoor permutation is sufficiently {\em lossy} as defined by Peikert and Waters (STOC 2008). We then show that the first round of OAEP satisfies condition (1) if its hash function is tt-wise independent for tt roughly proportional to the allowed message length. We clarify that this result requires the hash function to be keyed, and for its key to be included in the public-key of RSA-OAEP. We also show that RSA satisfies condition (2) under the Φ\Phi-Hiding Assumption of Cachin \emph{et al.}~(Eurocrypt 1999). This is the first {\em positive} result about the instantiability of RSA-OAEP. In particular, it increases confidence that chosen-plaintext attacks are unlikely to be found against the scheme. In contrast, RSA-OAEP\u27s predecessor in PKCS \#1 v1.5 was shown to be vulnerable to such attacks by Coron {\em et al}.~(Eurocrypt 2000)

    A Unified Approach to Deterministic Encryption: New Constructions and a Connection to Computational Entropy

    Get PDF
    This paper addresses deterministic public-key encryption schemes (DE), which are designed to provide meaningful security when only source of randomness in the encryption process comes from the message itself. We propose a general construction of DE that unifies prior work and gives novel schemes. Specifically, its instantiations include: -The first construction from any trapdoor function that has sufficiently many hardcore bits. -The first construction that provides bounded multi-message security (assuming lossy trapdoor functions). The security proofs for these schemes are enabled by three tools that are of broader interest: - A weaker and more precise sufficient condition for semantic security on a high-entropy message distribution. Namely, we show that to establish semantic security on a distribution M of messages, it suffices to establish indistinguishability for all conditional distribution M|E, where E is an event of probability at least 1/4. (Prior work required indistinguishability on all distributions of a given entropy.) - A result about computational entropy of conditional distributions. Namely, we show that conditioning on an event E of probability p reduces the quality of computational entropy by a factor of p and its quantity by log_2 1/p. - A generalization of leftover hash lemma to correlated distributions. We also extend our result about computational entropy to the average case, which is useful in reasoning about leakage-resilient cryptography: leaking \lambda bits of information reduces the quality of computational entropy by a factor of 2^\lambda and its quantity by \lambda

    On Notions of Security for Deterministic Encryption, and Efficient Constructions without Random Oracles

    Get PDF
    The study of deterministic public-key encryption was initiated by Bellare et al. (CRYPTO~\u2707), who provided the ``strongest possible notion of security for this primitive (called PRIV) and constructions in the random oracle (RO) model. We focus on constructing efficient deterministic encryption schemes \emph{without} random oracles. To do so, we propose a slightly weaker notion of security, saying that no partial information about encrypted messages should be leaked as long as each message is a-priori hard-to-guess \emph{given the others} (while PRIV did not have the latter restriction). Nevertheless, we argue that this version seems adequate for certain practical applications. We show equivalence of this definition to single-message and indistinguishability-based ones, which are easier to work with. Then we give general constructions of both chosen-plaintext (CPA) and chosen-ciphertext-attack (CCA) secure deterministic encryption schemes, as well as efficient instantiations of them under standard number-theoretic assumptions. Our constructions build on the recently-introduced framework of Peikert and Waters (STOC \u2708) for constructing CCA-secure \emph{probabilistic} encryption schemes, extending it to the deterministic-encryption setting and yielding some improvements to their original results as well

    Bi-Deniable Public-Key Encryption

    Get PDF
    In CRYPTO 1997, Canetti \etal put forward the intruiging notion of \emph{deniable encryption}, which (informally) allows a sender and/or receiver, having already performed some encrypted communication, to produce `fake\u27 (but legitimate-looking) random coins that open the ciphertext to another message. Deniability is a powerful notion for both practice and theory: apart from its inherent utility for resisting coercion, a deniable scheme is also noncommitting (a useful property in constructing adaptively secure protocols) and secure under selective-opening attacks on whichever parties can equivocate. To date, however, known constructions have achieved only limited forms of deniability, requiring at least one party to withhold its randomness, and in some cases using an interactive protocol or external parties. In this work we construct \emph{bi-deniable} public-key cryptosystems, in which both the sender and receiver can simultaneously equivocate; we stress that the schemes are noninteractive and involve no third parties. One of our systems is based generically on ``simulatable encryption\u27\u27 as defined by Damgård and Nielsen (CRYPTO 2000), while the other is lattice-based and builds upon the results of Gentry, Peikert and Vaikuntanathan (STOC 2008) with techniques that may be of independent interest. Both schemes work in the so-called ``multi-distributional\u27\u27 model, in which the parties run alternative key-generation and encryption algorithms for equivocable communication, but claim under coercion to have run the prescribed algorithms. Although multi-distributional deniability has not attracted much attention, we argue that it is meaningful and useful because it provides credible coercion resistance in certain settings, and suffices for all of the related properties mentioned above
    • …
    corecore